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A giant cluster exists if each node is connected to at least two other nodes.

Malloy-Reed; Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

κ>2:  a giant cluster exists;

κ<2:  many disconnected clusters;

Apply the Malloy-Reed Criteria to an Erdos-Renyi Network
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(Inverse percolation phase transition)

f = fraction of removed nodes

S

fc =(1-1/N)/<k> f=1/<k>

<k>=N-1

f=0
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RANDOM NETWORK: 
DAMAGE IS MODELED AS AN INVERSE PERCOLATION PROCESS



M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002) 4

FINAL REMARKS: EFFECT OF ASSORTATIVE MIXING: PERCOLATION



Problem: What are the consequences of removing a fraction f of all nodes?
  At what threshold fc will the network fall apart (no giant component)?
Random node removal changes 
 the degree of individual nodes [k  k’ ≤k] 
 the degree distribution [P(k)  P’(k’)] 
A node with degree k will loose some links and become a node with degree k’ with probability:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

The prob. that we had a k
degree node was P(k), so 
the probability that we will 
have a new node with 
degree k’ : 

Remove k-k’ 
links, each  with 
probability f

Leave k’ links 
untouched, each  
with probability 1-f

Let us asume that we know <k> and <k2> for the original degree distribution P(k) 
 calculate <k’> , <k’2> for the new degree distribution P’(k’).
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BREAKDOWN THRESHOLD FOR ARBITRARY P(k)



Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Degree distribution after we removed f fraction of nodes.

The sum is done over 
the triangle shown in 
the right, so we can 
replace it with k’

k=[k’, ∞)
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BREAKDOWN THRESHOLD FOR ARBITRARY P(k)



Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Degree distribution after we removed f fraction of nodes.

The sum is done over 
the triangle shown in 
the right, i.e. we can 
replace it with k’

k=[k’, ∞)

7

BREAKDOWN THRESHOLD FOR ARBITRARY P(k)



Robustness: we remove a fraction f of the nodes.
At what threshold fc will the network fall apart (no giant component)?
Random node removal changes 
 the degree of individuals nodes [k  k’ ≤k) 
 the degree distribution [P(k)  P’(k’)] 

Breakdown threshold:

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

κ>2:  a giant cluster exists  
κ<2:  many disconnected clusters

f<fc: the network is still connected (there is a giant cluster)
f>fc: the network becomes disconnected (giant cluster vanishes)

0

1

fc f

S
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BREAKDOWN THRESHOLD FOR ARBITRARY P(k)
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Albert, Jeong, Barabási, Nature 406 378 (2000)

Scale-free networks do not appear to 
break apart under random failures. 
Reason: the hubs. 
The likelihood of removing a hub is small. 
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ROBUSTNESS OF SCALE-FREE NETWORKS



Scale-free networks do not appear to break apart 
under random failures.   Why is that?
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ROBUSTNESS OF SCALE-FREE NETWORKS



γ>3:  κ is finite, so the network will break apart at a finite fc that depens on Kmin

γ<3:  κ diverges in the N ∞ limit, so fc  1 !!!
for an infinite system one needs to remove all the nodes to break the system.

For a finite system, there is a finite but large fc that scales with the system size as:

Internet: Router level map, N=228,263; γ=2.1±0.1;    κ=28   fc=0.962

AS  level map, N=  11,164; γ=2.1±0.1;    κ=264   fc=0.996
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ROBUSTNESS OF SCALE-FREE NETWORKS



Infinite scale-free networks with           do not break down under 
random node failures.

Scale-free random graph with
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NUMERICAL EVIDENCE



S: size of the giant component, f fraction of randomly removed nodes, not damage for f<fc

(i) γ>4:   S≈f-fc (similar to that of a random graph)

(i) 3>γ>4: S≈(f-fc)1/(γ-3)

(i) γ<3: fc =0 and S≈f1+1/(3-γ)

R. Cohen, D. ben-Avraham, S. Havlin,
Percolation critical exponents in scale-free networks 
Phys. Rev. E 66, 036113 (2002);
See also: Dorogovtsev S, Lectures on Complex Networks, Oxford, pg44
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SIZE OF THE GIANT COMPONENT DURING RANDOM DAMAGE –WITHOUT PROOF-
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fc

Attacks
γ ≤ 3 : fc=1

(R. Cohen et al PRL, 2000)

Failures

Albert, Jeong, Barabási, Nature 406 378 (2000)

ACHILLES’ HEEL OF SCALE-FREE NETWORKS

14



Internet

failure
attack

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)

Internet: Router level map, N=228,263; γ=2.1±0.1;    κ=28   fc=0.962

AS  level map, N=  11,164; γ=2.1±0.1;    κ=264   fc=0.996
Internet parameters: Pastor-Satorras & Vespignani, Evolution and Structure of the Internet: Table 4.1 & 4.4
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INTERNET’S ROBUSTNESS TO RANDOM FAILURES



ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold fc will the network fall apart (no giant component)?
Hub removal changes 
 the maximum degree of the network [Kmax  K’max ≤Kmax) 
 the degree distribution [P(k)  P’(k’)] 
A node with degree k will loose some links because some of its neighbors will vanish.

Claim: once we correct for the changes in Kmax and P(k),we are back to the robustness problem.
That is, attack is nothing but a robusiness of the network with a new Kmax and P(k). 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000). 16



ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
 the maximum degree of the network [Kmax  K’max ≤Kmax) `

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

If we remove an f fraction of hubs, the maximum degree changes:

As K’max ≤Kmax
we can ignore 
the Kmax term 

 The new maximum degree after 
removing f fraction of the hubs.
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ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
the degree distribution changes  [P(k)  P’(k’)] 
A node with degree k will loose some links because some of its neighbors will vanish.
Let us calculate the fraction of links removed ‘randomly’ , f’, as a consequence of we removing f 
fraction of hubs.

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

as K’max ≤Kmax

For γ2, f’1, which means that even 
the removal of a tiny fraction of hubs will 
destroy the network. The reason is that 
for γ=2 hubs dominate the network
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ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold fc will the network fall apart (no giant component)?
Hub removal changes 
 the maximum degree of the network [Kmax  K’max ≤Kmax) 
 the degree distribution [P(k)  P’(k’)] 
A node with degree k will loose some links because some of its neighbors will vanish.
Claim: once we correct for the changes in Kmax and P(k), we are back to the robustness problem.
That is, attack is nothing but a robustness of the network with a new K’max and f’. 

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).
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ATTACK THRESHOLD FOR ARBITRARY P(K)

Attack problem: we remove a fraction f of the hubs.
At what threshold fc will the network fall apart (no giant component)?

Cohen et al., Phys. Rev. Lett. 85, 4626 (2000).

Figure: Pastor-Satorras & Vespignani, Evolution and 
Structure of the Internet: Fig 6.12

fc
•fc depends on γ; it reaches its max for γ<3
•fc depends on Kmin (m in the figure)
•Most important: fc is tiny. Its maximum reaches
only 6%, i.e. the removal of 6% of nodes can 
destroy the network in an attack mode.
•Internet: γ=2.1, so 4.7% is the threshold.
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APPLICATION: ER RANDOM GRAPHS 

Consider a random graph with connection probability p such that at least 
a giant connected component is present in the graph.
                                                                   S surviving giant component
Find the critical fraction of removed 
nodes such that the giant connected
component is destroyed.

                                                                       
The higher the original average degree,        Empty squares show S  
the larger damage the network can survive.  Filled squares l – avg. distance 
Q: How do you explain the peak in the average distance?
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1

S

0 1f
fc

Attacks
γ ≤ 3 : fc=1

(R. Cohen et al PRL, 2000)

Failures

Albert, Jeong, Barabási, Nature 406 378 (2000)

SUMMARY: ACHILLES’ HEEL OF SCALE-FREE NETWORKS
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SUMMARY: ACHILLES’ HEEL OF COMPLEX NETWORKS

Internet

failure
attack

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)
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HISTORICAL DETOUR: PAUL BARAN AND INTERNET

1958

A network of n-ary 
degree of connectivity 
has n links per node
was simulated

The simulation revealed that networks where n ≥ 3 had a significant increase in 
resilience against even as much as 50% node loss. Baran's insight gained from the 
simulation was that redundancy was the key. 24



SCALE-FREE NETWORKS ARE MORE ERROR TOLERANT, 
BUT ALSO MORE VULNERABLE TO ATTACKS 

• squares: random failure
• circles: targeted attack
• S surviving fraction of GC
• l average distance

Failures: little effect on the 
integrity of the network. 
Attacks: fast breakdown

S

l
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REAL SCALE-FREE NETWORKS SHOW THE SAME DUAL BEHAVIOR 

• blue squares: random failure
• red circles: targeted attack
• open symbols: S (size of surviving 
  component)
• filled symbols: l (average distance)

• break down if 5% of the nodes are eliminated selectively (always 
the highest degree node)
• resilient to the random failure of 50% of the nodes.

Similar results have been obtained for metabolic networks and 
food webs.

S
S

l
l
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CASCADES

• Information cascades
     social and economic 

systems
     diffusion of innovations
• Cascading failures
     infrastructural networks
     complex organizations

Potentially large events triggered by small initial shocks
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CASCADING FAILURES IN NATURE AND TECHNOLOGY

Cascades depend on
• Structure of  the network 
• Properties of the flow
• Properties of the net elements
• Breakdown mechanism

Blackout

Flows of physical quantities 
• congestions
• instabilities
• Overloads

Earthquake Avalanche

28



Consequences
More than 508 generating units at 265 
power plants shut down during the 
outage. In the minutes before the event, 
the NYISO-managed power system was 
carrying 28,700 MW of load. At the height 
of the outage, the load had dropped to 
5,716 MW, a loss of 80%.

Origin
A 3,500 MW power surge (towards Ontario) 
affected the transmission grid at 4:10:39 p.m. 
EDT. (Aug-14-2003)

Before the blackout         After the blackout

NORTHEAST BLACKOUT OF 2003
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Network Science: Robustness Cascades 



CASCADES SIZE DISTRIBUTION OF BLACKOUTS

Probability of energy 
unserved during North 
American blackouts 
1984 to 1998.

Source Exponent Quantity

North America 2.0 Power

Sweden 1.6 Energy

Norway 1.7 Power

New Zealand 1.6 Energy

China 1.8 Energy

Unserved energy/power magnitude (S) distribution 

I. Dobson, B. A. Carreras, V. E. Lynch, D. E. Newman, CHAOS 17, 026103 (2007)

P(S) ~ S −α, 1< α < 2
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CASCADES SIZE DISTRIBUTION OF EARTHQUAKES

P(S) ~ S −α,α ≈ 1.67
Earthquake size S distribution 

Y. Y. Kagan, Phys. Earth Planet. Inter.  135 (2–3), 173–209 (2003)

Earthquakes during 1977–2000.
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